Computing High Stringency COGs Using Turán Graphs

Craig Falls, UNC CS
Jack Snoeyink, UNC CS
Bradford Powell, UNC Genomics
Comparative Genome Studies

Biological Terminology
- sequenced genomes
- mutual best-fit pairs
- Clusters of Orthologous Groups (COGs)

Mathematical Terminology
- string of DNA base pairs
- graph
 \[V = \text{genes} \]
 \[E = \text{best-fit pairs} \]
- sets of cliques

Flow Diagram

1. sequenced genomes
2. mutual best-fit pairs
3. Clusters of Orthologous Groups (COGs)
4. BLAST
5. COG algorithm
6. biologists
7. function prediction
8. phylogenetic classification
9. ancestor studies
Comparative Genome Studies

Biological Terminology

- sequenced genomes
- mutual best-fit pairs
- Clusters of Orthologous Groups (COGs)

Mathematical Terminology

- string of DNA base pairs
- graph
 - $V = \text{genes}$
 - $E = \text{best-fit pairs}$
- sets of cliques

Processes

1. BLAST
2. COG algorithm
3. biologists
4. function prediction
5. phylogenetic classification
6. ancestor studies
Comparative Genome Studies

Biological Terminology

- sequenced genomes
- mutual best-fit pairs
- Clusters of Orthologous Groups (COGs)

Mathematical Terminology

- string of DNA base pairs
- graph
 - $V = $ genes
 - $E = $ best-fit pairs
- sets of cliques

Diagram

- BLAST
- COG algorithm
- biologists
- function prediction
- phylogenetic classification
- ancestor studies
Comparative Genome Studies

Biological Terminology
- sequenced genomes
- mutual best-fit pairs
- Clusters of Orthologous Groups (COGs)

Mathematical Terminology
- string of DNA base pairs
- graph $V = \text{genes}$
- $E = \text{best-fit pairs}$
- sets of cliques
- function prediction
- phylogenetic classification
- ancestor studies
Genomes $\xrightarrow{\text{BLAST}}$ **Mutual Best-Hit Graph**

![Diagram of the mutual best-hit graph](image)
COMPARATIVE GENOME STUDIES

<table>
<thead>
<tr>
<th>Biological Terminology</th>
<th>Mathematical Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequenced genomes</td>
<td>string of DNA base pairs</td>
</tr>
<tr>
<td>mutual best-fit pairs</td>
<td>graph</td>
</tr>
<tr>
<td>Clusters of Orthologous Groups (COGs)</td>
<td>$V = \text{genes}$</td>
</tr>
<tr>
<td></td>
<td>$E = \text{best-fit pairs}$</td>
</tr>
<tr>
<td></td>
<td>sets of cliques</td>
</tr>
<tr>
<td></td>
<td>function prediction</td>
</tr>
<tr>
<td></td>
<td>phylogenetic classification</td>
</tr>
<tr>
<td></td>
<td>ancestor studies</td>
</tr>
</tbody>
</table>
Comparative Genome Studies

<table>
<thead>
<tr>
<th>Biological Terminology</th>
<th>Mathematical Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequenced genomes</td>
<td>string of DNA base pairs</td>
</tr>
<tr>
<td>mutual best-fit pairs</td>
<td>graph</td>
</tr>
<tr>
<td>Clusters of Orthologous Groups (COGs)</td>
<td>$V =$ genes</td>
</tr>
<tr>
<td>biologists</td>
<td>$E =$ best-fit pairs</td>
</tr>
<tr>
<td>function prediction</td>
<td>sets of cliques</td>
</tr>
<tr>
<td>phylogenetic classification</td>
<td></td>
</tr>
<tr>
<td>ancestor studies</td>
<td></td>
</tr>
</tbody>
</table>
Comparative Genome Studies

Biological Terminology
- sequenced genomes
- mutual best-fit pairs
- Clusters of Orthologous Groups (COGs)

Mathematical Terminology
- string of DNA base pairs
- graph
 - \(V = \) genes
 - \(E = \) best-fit pairs
- sets of cliques

Biologists
- function prediction
- phylogenetic classification
- ancestor studies
A COG at stringency m is the union of the vertices in a set of cliques of size m connected by cliques of size $m-1$. [Tatusov '97]
A **COG** at stringency m is the union of the vertices in a set of cliques of size m connected by cliques of size $m-1$. [Tatusov '97]

Example:

Level 2:

- **gene**
- **mutual best hit**
- **COG**
COG Definition

A COG at stringency m is the union of the vertices in a set of cliques of size m connected by cliques of size $m-1$. [Tatusov '97]

Example:

Level 3:
A **COG** at stringency m is the union of the vertices in a set of cliques of size m connected by cliques of size $m-1$. [Tatusov '97]

Example:

Level 4:

- gene
- mutual best hit
- COG
COGs Form a Hierarchy
Computing COGs by Clique Enumeration

Example with stringency 3

Graph Algorithm COGs
Computing COGs by Clique Enumeration

Example with stringency 3

- **Gene**
- **Mutual best hit**
- **3 clique**
- **Shared 2 clique**
Computing COGs by Clique Enumeration

Example with stringency 3
Computing COGs by Clique Enumeration

Example with stringency 3
COMPUTING COGs BY CLIQUE ENUMERATION

Example with stringency 3

Problem: too many cliques to enumerate
New Algorithm vs Clique Enumeration

Motivation: improve performance for data sets of practical importance

Number of Vertices 4,606
Number of Edges 159,081
Clique Runtime 3 hr 58 min
New Algorithm Runtime 11 sec

How is a 4 order of magnitude improvement achieved?
COG Computation is NP-hard

Maximum Clique Problem

Instance: A graph $G = (V,E)$ and a positive integer $J < |V|$.

Question: Does G contain a clique of size at least J?

Karp proved that this problem is NP-hard in '72.

Theorem

COG computation is **NP-hard** by reduction from the maximum clique problem.

Proof (Reader's Digest version)

There is at least one COG of stringency m if and only if the input graph has an m-clique.
NATURE OF THE INPUT

Algorithm

Graph

COGs

Type of gene relationship

- **Orthologs**
 (genes shared through evolution)

- **Orthologs and Paralogs**
 (genes related by duplication events)

Induced subgraph

- **Clique**

- **Turán graph**
 (complete 3-partite graph)
NATURE OF THE INPUT

- **Type of gene relationship**
 - Orthologs (genes shared through evolution)
 - Orthologs and Paralogs (genes related by duplication events)

- **Induced subgraph**
 - Clique
 - Turán graph (complete 3-partite graph)

Input graphs can be described by fewer Turán graphs than cliques.
We call a complete k-partite graph a "Turán graph".

Example:

Turán (1941) characterized the graphs with n vertices, no $(k+1)$-cliques, and the maximum number of edges as complete k-partite graphs with $\frac{n}{k}$ or $\frac{n}{k} + 1$ vertices in each partition.
Utilizing Turán Graphs

Note: A Turán graph spanning m species is a set of m-cliques sharing $(m-1)$-cliques.

Example

In this Turán graph spanning 3 species,
Utilizing Turán Graphs

Note: A Turán graph spanning m species is a set of m-cliques sharing $(m-1)$-cliques.

Example

this 3-clique

species 1 species 2 species 3
Utilizing Turán Graphs

Note: A Turán graph spanning m species is a set of m-cliques sharing $(m-1)$-cliques.

Example

and this 3-clique
Utilizing Turán Graphs

Note: A Turán graph spanning m species is a set of m-cliques sharing $(m-1)$-cliques.

Example

share this 2-clique.

species 1 species 2 species 3
Utilizing Turán Graphs

Note: A Turán graph spanning m species is a set of m-cliques sharing $(m-1)$-cliques.

Original COG Definition
A COG at stringency m is the union of the vertices in a set of cliques of size m connected by cliques of size $m-1$. [Tatusov '97]

Turán-based COG Definition
A COG at stringency m is the union of the vertices in a set of Turán graphs spanning m vertices connected by vertices spanning $m-1$ species.
Definition
A maximal Turán graph is one which is not a proper subset of any Turán graph.
COG Algorithm (Overview)

Input: a graph
-- vertices are genes
-- edges are mutual best-hit pairs

Algorithm phase 1: find all maximal Turán graphs
-- branch and bound
-- avoid subsets of known maximal Turán graphs

Intermediate structure: Turán relation graph
-- vertices are maximal Turán graphs
-- weight of vertex is the number of species spanned
-- weight of edge is the size of the largest shared clique

Algorithm phase 2: find connected components = COGs
-- series of depth-first searches

Output: COGs at all stringencies
Input: a graph
-- vertices are genes
-- edges are mutual best-hit pairs
COG Algorithm (Overview)

Input: a graph
--- vertices are genes
--- edges are mutual best-hit pairs

Algorithm phase 1: find all maximal Turán graphs
--- branch and bound
--- avoid subsets of known maximal Turán graphs

Intermediate structure: Turán relation graph
--- vertices are maximal Turán graphs
--- weight of vertex is the number of species spanned
--- weight of edge is the size of the largest shared clique

Algorithm phase 2: find connected components = COGs
--- series of depth-first searches

Output: COGs at all stringencies
Turán Enumeration Pseudo-Code

Pseudo-code for phase 1

MaximalTurán (G)
 for each edge (v1,v2) in G do
 max_Turán := Turán of vertex[v1] intersect Turán of vertex[v2]
 feasible := mutual neighbors of v1 and v2 in G
 cur_Turán := {v1,v2}
 Branch (feasible, max_Turán, cur_Turán)

Branch (feasible, max_Turán, cur_Turán)
 vertices_to_avoid := choose a vertex set from max_Turán
 new_feasible := feasible
 for each v in feasible
 if v in vertices_to_avoid then continue
 results := Bound (v, new_feasible, max_Turán, cur_Turán)
 if results != nil and vertices_to_avoid = nil
 then vertices_to_avoid := choose a vertex set from results
 max_Turán := max_Turán union results
 new_feasible := new_feasible - {v}
 return max_Turán

Bound (vertex, feasible, max_Turán, cur_Turán)
 Turán of vertex := Turán of vertex[vertex]
 max_Turán := max_Turán intersect Turán of_vertex
 cur_Turán := {vertex} union cur_Turán
 feasible := feasible intersect neighborhoods of vertex in G
 if feasible = nil then
 if max_Turán = nil then
 for each vertex in cur_Turán
 Turán of vertex[vertex] := Turán of vertex[vertex] union cur_Turán
 return max_Turán
 else return nil
 else Branch (feasible, max_Turán, cur_Turán)
Applying Known Maximal Clique Algorithms

Original graph

species 1
species 2
species 3

Intra-species edges added

species 1
species 2
species 3

- gene
- inter-species edge
- mutual best hit
- cross-species clique

Turán graph

mutual best hit
Applying Known Maximal Clique Algorithms

Original graph

- species 1
- species 2
- species 3

Intra-species edges added

- species 1
- species 2
- species 3

- gene
- inter-species edge
- mutual best hit
- cross-species clique

Turán graph
Applying Known Maximal Clique Algorithms

Original graph

Intra-species edges added

- gene
- mutual best hit
- Turán graph
- gene
- inter-species edge
- mutual best hit
- cross-species clique
Efficient Maximal Clique Algorithms

Algorithms for enumerating maximal cliques:

1) **Auguston-Minker '70**
 \[O(m^2) \]

2) **Bron-Kerbosh '71**
 no known complexity bounds but empirically faster than (1)

3) **Tsukiyama '77**
 \[O(|V| \cdot |E| \cdot m) \]
 (where \(m = \) number of maximal cliques)
Theorem: Phase 1 requires exponential time.

Proof: A graph can have an exponential number of maximal Turán graphs.

Consider graph $G=(V,E)$:

$V = \{v_{ij} \mid 1 \leq i \leq n, 1 \leq j \leq n\}$

$E = \{(v_{ij}, v_{kl}) \mid i \neq k\}$

Example (n=3):

```
1       2       3
1 1 1 1 2 2 2
2 2 2 2 3 3 3
3 3 3 3 1 1 1
```
Theorem: Phase 1 requires exponential time.

Proof: A graph can have an exponential number of maximal Turán graphs

Consider graph $G=(V,E)$:

$V = v_{ij}$ for $1 \leq i \leq n$, $1 \leq j \leq n$

$E = (v_{i,j}, v_{k,l})$ for $i \neq k$, $j \neq l$

Example (n=3):

Every permutation of $\{1,2,3\}$ corresponds to a maximal Turán graph.

There is at least $n!$ maximal Turán graphs from only n^2 vertices.
COG Algorithm (Overview)

Input: a graph
 -- vertices are genes
 -- edges are mutual best-hit pairs

Algorithm phase 1: find all maximal Turán graphs
 -- branch and bound
 -- avoid subsets of known maximal Turán graphs

Intermediate structure: Turán relation graph
 -- vertices are maximal Turán graphs
 -- weight of vertex is the number of species spanned
 -- weight of edge is the size of the largest shared clique

Algorithm phase 2: find connected components = COGs
 -- series of depth-first searches

Output: COGs at all stringencies
Intermediate structure: Turán relation graph
-- vertices are maximal Turán graphs
-- weight of vertex is the number of species spanned
-- weight of edge is the size of the largest shared clique
Intermediate structure: Turán relation graph
-- vertices are maximal Turán graphs
-- weight of vertex is the number of species spanned
-- weight of edge is the size of the largest shared clique

Original graph
species 1 species 2 species 3

Turán relation graph

related Turáns

gene

mutual best hit

Turán graph
Turán Relation Graph

Intermediate structure: Turán relation graph
-- vertices are maximal Turán graphs
-- weight of vertex is the number of species spanned
-- weight of edge is the size of the largest shared clique

Original graph
species 1 species 2 species 3

Turán relation graph

- Related Turáns
- Gene
- Mutual best hit
- Turán graph
COG Algorithm (Overview)

Input: a graph
-- vertices are genes
-- edges are mutual best-hit pairs

Algorithm phase 1: find all maximal Turán graphs
-- branch and bound

Intermediate structure: Turán relation graph
-- vertices are maximal Turán graphs
-- weight of vertex is the number of species spanned
-- weight of edge is the size of the largest shared clique

Algorithm phase 2: find connected components = COGs
-- series of depth-first searches

Output: COGs at all stringencies
Algorithm Phase 2

Pseudo-code for phase 2:

for each v in V[G]
 for each pair mt1,mt2 of maximal Turán graphs in Turâns_of_vertex[v]
 key := <mt1,mt2>
 if Hashtable_has_key(key)
 then bitv := Hashtable_get(key)
 else bitv := bit vector with all 0s
 Hashtable_replace(key, bitv)
 return the hashtable

for each <mt1,mt2,bitv> in the hashtable
 edge := <mt1,mt2>
 edge_weight := number of 1s in bitv
 E := {(edge,edge_weight)} union E
 V := {mt1,mt2} union V
 return G = (V,E)

for each level 3 < m < |S| do
 V := vertices in G with weight >= m
 E := edges in G with weight >= m-1
 connected_components := DFS(V,E)
 for each component in connected_components do
 vertices_in_cog := nil
 for each maximal Turán t in component do
 vertices_in_cog := vertices_in_cog union {t}
 done
 report vertices_in_cog as next COG at level m
 done
done
Algorithm Phase 2

Algorithm phase 2: find connected components = COGs
- series of depth-first searches
- at stringency m: edge weight $\geq m-1$; vertex weight $> m$

Turán relation graph

COGs at stringency 2

- related Turáns
- gene
- mutual best hit
- Turán graph
Algorithm Phase 2

Algorithm phase 2: find connected components = COGs
-- series of depth-first searches
-- at stringency m: edge weight $\geq m-1$; vertex weight $> m$

Turán relation graph

COGs at stringency 3

related Turáns

- gene
- mutual best hit
- Turán graph
Algorithm phase 2: find connected components = COGs
-- series of depth-first searches
-- at stringency m: edge weight $\geq m-1$; vertex weight $> m$

Turán relation graph

COGs at stringency 4
Graph
Algorithm
COGs

COG Algorithm (Overview)

Input: a graph
 -- vertices are genes
 -- edges are mutual best-hit pairs

Algorithm phase 1: find all maximal Turán graphs
 -- branch and bound

Intermediate structure: Turán relation graph
 -- vertices are maximal Turán graphs
 -- weight of vertex is the number of species spanned
 -- weight of edge is the size of the largest shared clique

Algorithm phase 2: find connected components = COGs
 -- series of depth-first searches

Output: COGs at all stringencies
Runtimes for New COG Algorithm

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Number of Edges</th>
<th>Number of Maximal Turans</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>36,183</td>
<td>38,244</td>
<td>2 sec</td>
</tr>
<tr>
<td>Medium</td>
<td>297,551</td>
<td>535,196</td>
<td>46 sec</td>
</tr>
<tr>
<td>Large</td>
<td>900,056</td>
<td>1,527,406</td>
<td>53 sec</td>
</tr>
<tr>
<td>Huge</td>
<td>1,171,655</td>
<td>3,527,758</td>
<td>2 hr 58 min</td>
</tr>
<tr>
<td>NewHuge</td>
<td>1,729,907</td>
<td>4,077,530</td>
<td>2 hr 43 min</td>
</tr>
</tbody>
</table>

Turán Enumeration Performance for 5 data sets on 20 bacterial genomes
Runtimes for Modified Input Shows Robustness

<table>
<thead>
<tr>
<th></th>
<th>Number of Edges</th>
<th>Number of Maximal Turans</th>
<th>Runtime (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>159,081</td>
<td>455,746</td>
<td>11</td>
</tr>
<tr>
<td>Edges Added</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+2.5%</td>
<td></td>
<td>468,960</td>
<td>12</td>
</tr>
<tr>
<td>+5%</td>
<td></td>
<td>480,714</td>
<td>14</td>
</tr>
<tr>
<td>+10%</td>
<td></td>
<td>506,078</td>
<td>18</td>
</tr>
<tr>
<td>Edges Removed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.5%</td>
<td></td>
<td>1,126,934</td>
<td>38</td>
</tr>
<tr>
<td>-5%</td>
<td></td>
<td>2,031,402</td>
<td>139</td>
</tr>
<tr>
<td>-10%</td>
<td></td>
<td>2,187,630</td>
<td>375</td>
</tr>
</tbody>
</table>
Numbers of COGs at Each Stringency

Numbers of COGs at stringency 3 through m for 20 bacterial genomes.
Summary and Significance

Turán graphs allow COG computation to be orders of magnitude faster than straightforward clique enumeration.

<table>
<thead>
<tr>
<th>Number of Vertices</th>
<th>4,606</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Edges</td>
<td>159,081</td>
</tr>
<tr>
<td>Clique Runtime</td>
<td>3 hr 58 min</td>
</tr>
<tr>
<td>Turán Runtime</td>
<td>11 sec</td>
</tr>
</tbody>
</table>

We plan to integrate the algorithm into the COG database, which is currently limited to stringency 3 COGs.