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Dmitriy Morozov is in the second 
year of his graduate program at 
Duke University. He is originally 

from Snezhinsk, Russia, and came to 
the United States of America in 1998, 
completing the last year of high-school. 
He did his undergraduate work at the 
North Carolina State University in Ra-
leigh, with a double major in Computer 
Science and Mathematics. He worked 
with Erich Kaltofen on memory man-
agement questions for LinBox, a C++ 
library for exact linear algebra compu-
tation with sparse and structured matri-
ces, and with Larry Norris on a Maple 

system to grade homework solutions in 
calculus.

At Duke, Dmitriy first looked at questions 
about independent complexes, which 
form an interesting combinatorial 
relaxation of Delaunay triangulations 
or, more precisely, of dual complexes 
of disks in the plane. To define these 
concepts, we recall that the union of a 
finite set of disks can be decomposed 
into closed convex cells using the 
Voronoi diagram or, more precisely, 
the power diagram of the disks. The 
dual complex is then the nerve of the 

collection of closed cells. As it turns out, 
every simplex (vertex, edge, or triangle) 
in the dual complex corresponds to a 
combinatorially unique configuration of 
(one, two, or three) disks. Specifically, 
the collection is independent by which 
we mean that for every possible 
assignment of k boolean variable there 
exists a point that is contained in the 
i-th disk if and only if the i-th variable is 
true. Besides the dual complex, there 
are other complexes that cover the 
same subset of the plane and whose 
simplices correspond to independent 
collections of disks. We refer to them as 
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First year seminars at UNC Chapel Hill give professors 
a chance to teach something new and interdisciplin-
ary, and give students a chance to have a small class 

academic experience in their first year of university. Courses 
cover the gamut of disciplines, and make many wish they 
were freshmen again (see the current selection at http://www.
unc.edu/fys/current_courses.html).
 
Jack Snoeyink developed “Folding from paper to proteins” 
in Fall 2002, and taught it for the second time in Fall 2004. 
This is a course about shape and structure, explored through 
origami, robotics, and molecular biology. It considers many 
puzzle-like questions  about folding shapes and structures, 
including what is one of the biggest puzzles in science, “How 
does the sequence of amino acids coded by a gene reliably 
fold into the three-dimensional structure to be a functioning 
protein?”

The last assignment was to develop a lesson plan to teach 
a middle school class about some aspect of math or science 
through folding. These opportunities were advertized through 
the UNC international center, and a couple of class visits 
have already been made.

Nikki Malatin, a science teacher at West Caldwell High 
School in Lenoir, North Carolina, was one of the first to re-
ply because she was excited by the idea of using origami 
to present lessons in chemistry.  Thus, Jack Snoeyink went 
with graduate student Andrea Mantler and first-year student 
Amy Jensen to present lessons on chemical bonding in two 
science classes.

Each student made an atom out of two squares of paper, us-
ing a module designed by Yoshihide Momotani.  This let them 
talk about the geometry of bonds: carbons with four bonds in 
tetrahedral conformation (shown by Laura Thrift and Trista 

Lee), zwitterions in a benzene ring (held up by Chris Hol-
lar), and how the geometric properties of the oxygen bonding 
leads to the charged nature of water (oxygen with two bound 
hydrogens). 

Laura Thrift with carbon atomChris Hollar with benzene ring

Trista Lee with carbon bond
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independent complexes. Our interest 
in these complexes is motivated by 
the fact that they correspond to correct 
inclusion-exclusion formulas for the 
union of disks [1]. Dmitriy looked at 
the question whether or not the flip-
graph of the independent complexes 
is connected. In other words, is 
it always possible to go from one 
independent complex to another in a 
sequence of edge flips without leaving 
the set of independent complexes? 
An affirmative answer to this question 
would suggest a particular approach to 
maintaining an independent complex 
under continuous motion of the disks 
(or to the same problem for balls in 
space used to model a protein or other 
molecule). Unfortunately, the flip-graph 
is not connected, as shown by a simple 
counterexample that Dmitriy found. 
More generally, he showed that even if 
we consider combinatorial moves that 
are more global than edge flips (they 
affect some constant number of disks 
at a time), the corresponding graph of 
independent complexes (whose arcs 
represent the moves) is not necessarily 
connected; see Figure 1. 

Dmitriy officially joined the Bio-Geom-
etry group at Duke when he embarked 
on his second year project with Herbert 
Edelsbrunner. The topic is the study of 
persistence diagrams and their use in 
bio-geometry. The motivation for this 
work was the stability of these diagrams 
under perturbations of the input function 
proved in [2]. To get started, Dmitriy re-
implemented the original persistence 
algorithm [3] and used it to construct 
the diagram from filtrations of simplicial 
complexes. Second, he adjusted the 
geometric matching algorithm of Efrat, 
Itai and Katz [4] to compute the Fréchet 
bottleneck distance between persis-
tence diagrams, which is the infimum, 
over all bijections between the points of 
the two diagrams, of the supremum of 
the L∞ distance between a point and its 
image. This concept figures prominent-
ly in the stability result, which states 
that the Fréchet bottleneck distance 
between the diagrams is bounded from 
above by the maximum difference be-
tween the two functions.

Using these implementations, Dmitriy 
can now easily experiment with data 

from applica-
tion areas. Take, 
for example, a 
protein structure 
represented by 
its sequence of 
α-carbon atoms 
in three-dimen-
sional space. The  
distance function 
maps every point 
of space to its Eu-
clidean distance 
from the nearest 
atom in this se-
quence. The per-
sistence diagram 
records how the 
topology of the 
sublevelset of this 
function changes 
as we increase 
the threshold, 
and it pairs off the 
changes in topol-
ogy and maps 
them to points 
whose coordi-
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nates mark the birth and death of the 
corresponding homological feature. 
We have a diagram for each homology 
group, and the one for the first homol-
ogy group (representing one-dimen-
sional cycles) is shown in Figure 2.

The stability result implies that if we 
perturb the protein a little bit, we 
change the diagram only by a little bit. It 
is therefore tempting to conjecture that 
proteins in the same structural family 
have persistence diagrams with small-
er Fréchet bottleneck distance than 
proteins in different families. While this 
is true in quite a few cases, there are 
also counterexamples. Dmitriy is now 
looking deeper into this question, us-
ing the distance in space but also other 
functions. He also studies the folding 
trajectory of a protein, which maps to 
a 1-parameter family (a stack) of per-
sistence diagrams. The hope is that 
the continuous changes in the diagram 
provide or suggest a qualitative as well 
as quantitative language to describe 
and talk about such trajectories.

Dmitriy Morozov

Figure 2. Right: the protein 1IG5 and its most persistent one-dimen-
sional cycle. Left: the persistence diagram of the distance function 
defined by the protein.  The (marked) point furthest away from the 
diagonal corresponds to the most persistent cycle in the protein.

Figure 1. 1b and 1c show two independent complexes for the set of 
disks in 1a. The complex in 1b forms an isolated vertex in the flip-
graph since no flip that affects fewer than all 10 disks will produce a 
valid independent complex.

1a 1b 1c
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